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Abstract

Define a sequence S¥ = {ay,az,as ...} by setting that a; = n and a;1 = ka; — p; where p; is the
biggest prime number less than ka;. There are k’s such that inf S¥ = 1 for any n € N, and we
will say that such k’s have the property all-to-one. Briefly, if a natural number k£ has all-to-one
property, we will say that k is all-to-one. In this paper, we will provide the list of k’s with
all-to-one property under 28314000 using Nagura and Ramare’s result and an algorithm to find
all-to-one k. Also, we show that if 1 < inf S¥ for some k, there must be a repeated subsequence
of numbers, an orbit in S¥, moreover it is an equivalent condition for k not to be all-to-one.
Furthermore, we will show that for any all-to-one k we can represent any natural number in the
form of power series of k~! with prime coefficients. Finally we expand this sequence using more
general functional operations on natural numbers, i.e. define the sequence 87 by a;11 = f(a;)—p;
for some function f : N — N. Using similar notation, we say that a function f is all-to-one if
inf S} for every natural number n. We will provide few functions with all-to-one property and
suggest a conjecture on a function to be all-to-one.

1. Introduction

Prime numbers have been one of the biggest concerns in the field of number theory since
Euclid, especially the distribution of prime numbers was the most important and difficult co-
nundrum of the 19th and 20th century, even until now. While Riemann’s hypothesis suggests
the distribution law of prime numbers very precisely, there are some ‘naive’ theorems and con-
jectures on distributions. ‘Bertrand’s postulate’ is one of the earlist approach on the bound of
prime counting function (). [1]

The postulate states that there always exists at least one prime number between x and 2x
for any > 1. The very first complete proof of this conjecture was provided by Cheybshev in
1852. After that, Ramanujan’s brief proof [2] and Erdos’s ‘elementary’ proof followed [3]. Since
then, many improvements have been made by lots of mathematicians. From the fact that the
prime number theorem implies that the first Chebyshev function ¥(z) ~ x, one can think of a
generalised version of Bertrand’s postulate, which must be in the form of ‘there exists at least
one prime number in [z, Az| for some A € Ry for all z > B for some B € R, . Jitsuro Nagura
gave the first generalised Bertrand’s postulate - a better linear bound for prime numbers - in
1952 [4], and many better results on the problem has followed so far.

In this paper, we will study on ‘kn —p’ sequence, which is related to these bounds and suggest
some conjectures. First, let us define kn — p sequence. For any natural number n and some k,
find the biggest prime number p (strictly) less than kn. We can obtain a new natural number
kn —p by subtracting p from kn. Now we can get a sequence n, kn —p, ... by repeating the same
action we did for n on kn — p. We want to verify whether it converges, and if so, which number
it will end up with. Interestingly, when k = 4, the sequence always converges to 1 regardless



which number you start with, big or small. For example, let us start with 1000. The biggest
prime smaller than 4000 is 3989 and thus we have 4000 — 3989 = 11 now. The biggest prime
number smaller than 44 is 43, hence we have 44 — 43 = 1.

Now we wonder, would 3n — p always converge to 17 Or possibly 2412n — p? The answer is
yes. But it does not hold for 5n — p (when n = 2) or 712n — p (when n = 13). We will provide
an algorithm to verify if kn — p converges to 1 for any n for some k, and provide a list of such k’s
under 28314000 using the algorithm. Before we start, since the notation kn — p does not seem
so very mathematical, we will use these definitions in this paper to state this more elegantly.

Definition 1. For k,n € N, 8¥ = {a;,a2,a3...} is a sequence such that, a; = n and a;; =
ka; — p; where p; is the biggest prime number less than ka;. If such p; does not exist, a;11 = a;.

Definition 2. If k € N satisfies inf S¥ = 1 for all n € N, we say that k has all-to-one property.
Equivalently, & is all-to-one. If k is not all-to-one, we say k is not-all-to-one.

Observation 1. Using Dirichlet’s theorem, [5] one can easily show that there should be n such
that kn — 1 is a prime and hence inf,eyS¥ = 1 for any k and there cannot be all-to-j k with

J#1L

Our first goal in this paper will be establishing an algorithm to determine whether & is all-to-
one or not, and secondly to find out some properties of not-all-to-one k’s, finally show that any
n € N can be represented in a power series of k~! where k is all-to-one with prime coefficients.
Before we discuss the main theme, let us define terms to use in this paper.

Definition 3. If a subsequence of numbers appear repeatedly in the sequence S¥, we call it an
orbit. We do not consider orbits containing 1.

Definition 4. We call the smallest element s of S* a start of the orbit.

In the following sections, we provide the properties an orbit can have corresponding the parity
of k, and the statistics on orbits.

2. all-to-one k

2.1. Existence of all-to-one k

Theorem 1. There exists at least 4 all-to-one k’s and their values are 2, 3, 4, 6. . ..

PrROOF. In 1952, Jitsuro Nagura proved that [4]
6
There exists at least one prime number p € [z, Sx] for all z > 25

Using this result, for any n such that %kn > 25, we have there must be a prime p where
2kn < p < kn. This suggests that S¥(2) = kn — p; < kn — 3kn = $kn < n. This yields that for
any n € N, inf S¥ < %. Therefore we only have to check the cases n < % to verify where k is
all-to-one or not. By direct calculations, we have k = 2,3,4,6 is all-to-one. O

Like this, when a linear bound with at least one prime is given, we can verify finite natural
number k’s to be all-to-one or not. If the number gets bigger, we can use prime gaps to reduce
the essential cases to verify whether & is all-to-one.



Theorem 2. There are 5004113 all-to-one k’s under 28314000 and the orbits for not-all-to-one
k’s under 28814000 does not have any components exceed 382.

PROOF. In 2003, Olivier Ramare [6] suggested a better linear bound on prime, such that

There exists at least one prime number p € {x (1 for all z > 10726905041

N 28314000)’4

For k < 28314000 and n € N such that kn < 10726905041, using similar analogy to 2.1, we
have S¥(2) = kn — p; < n. It implies that k-inf S¥ < 10726905041. Note that the largest prime
gap before 10726905041 is 382 from Young and Potler’s result [7], we can easily deduce that
inf S;’f < 382. Hence we only have to check the cases with n < 382 to determine whether k is
all-to-one or not. Furthermore, we can deduce that every orbits for k£ < 28314000 does not have
any components exceed 382. (I

From these observations, we can deduce that if a nonlinear bound (which is better than linear
bounds) for a prime number is given, we can verify any k to be all-to-one. Here we provide an
example, while one can find their own verifying method using any given upper bounds and lower
bounds of the prime counting function or Chebyshev functions, we use Pierre Dusart’s bounds
on first Chebyshev function [8]. Since it is known that the first Chebyshev function is almost
linear, it is much easier to find a proper upper bound for the numbers we have to check.

Theorem 3. For any k, we can verify whether it is all-to-one or not with finite calculations.
Moreover, we only have to check numbers under the largest prime gap before

(W, e<2k1>“>, a = 0.006788

k—1
PROOF. Let us use similar analogy. For any k, we want 3 prime p such that kn —n < p < kn.
Then regarding the first Chebyshev function J(z) = 3 _ logp, we want J(kn)—9((k—1)n) > 0.
Introducing the upper and lower bound of Chebyshev function calculated by Pierre Dusart,
|9(z) — x| < 0.006788 = for x > 10544111,

(k) — 9((k — 1)n) >n — 0.006788(10’;7;m N 10(;(;;_1){;1)

(2k — 1)n 2% — 1
>n—0. 2 Y (1 —o.
> n — 0.006788( oy ) =n(1 - 0.006788 oaTm

)

To have this strictly bigger than 0, we want 1 — 0.0067881201;2 > 0, ie. n > %e(zk_l)o‘

(v = 0.006788). Since (k — 1)n > 10544111 to have upper bound of ¥((k — 1)n) right, we
conclude that

10544111 1 5 1),

If n > max( 1 %

), kn—p<n p is a prime, o = 0.006788
Since kn — p must be equal or smaller than the largest prime gap g before kn, we only have
to check numbers under g. O

But as an exponential function grows very fast, it can be challenging to check if a big number
k is all-to-one or not. If a sharper bound for prime counting functions is given, we will be able
to verify more k’s.



Corollary 4. sup S¥ < oo for any k, n

PROOF. Since we have shown that the sequence decreases in the very first and then there only
appears numbers smaller than some prime gap g, supremum of the sequence S* should be finite.

Corollary 5. The number k is not-all-to-one, if and only if In € N where S¥ contains an orbit

PROOF. Since inf S¥ < ¢ for some g, if k is not-all-to-one, there must be an orbit by the
pigeonhole principle. The other way round is trivialS¥.

From this corollary, we can learn the fact that we only need to check if there is any orbit to
verify if it is all-to-one k or not. In other words, the sequence S¥ never diverges.

2.2. Algorithm to reduce the calculations

We have shown that it is possible to check if a k is all-to-one or not in the previous section.
But still it needs too many calculations to check whether inf S¥ = 1. To avoid the problem, we
will establish a better algorithm for the verification in this section.

k k
Observation 2. 8% = {n,8%(2),8%(3),...} = {n}usS:"® = {n,Sk2)yus® = ..
Obviously, if we start sequence from the second element of the sequence, you will get the

exactly same subsequence from the second element. That is, when verifying, we do not need to
proceed verifying if we get a number we have already checked.

Lemma 6. (k,Sk(i)) = (Sk(i),Sk(i — 1)) =1 fori>2,Vk,n € N

PROOF. Let m = S¥(i—1). Let p be the largest prime number less than km, then km—p = SE(i).
Now, d = (km,km — p) = (km,p) is either 1 or p. Suppose d = p, then p < km — p implies
that km > 2p. But Bertrand postulate implies that 3 prime ¢ such that p < ¢ < 2p < km,
which is contradiction to the maximality of p. Hence (km,km — p) = 1 and it implies that
(k,km —p) = (m,km —p) = 1.

Corollary 7. Any number a where ged(a, k) > 1 cannot appear in the midth of any sequence S*

By this corollary, we only have to check all the coprimes under the prime gap g. This con-
dition could be a breakthrough when calculating big numbers unless k is a big prime. It is very
likely k to have a small prime divisor ¢ regardless big or small. Then we only have to check
[g(1— %ﬂ numbers. More divisors k£ has, less numbers we have to check.

To combine all of these results above, we get the following algorithm for verification. In
order to find the biggest prime number before kn in this study, we first generated a list of prime
numbers with the maximum length M such that it does not raise any errors while searching.
Then we can find prime numbers that are small enough with the time complexity O(log M). For
the prime numbers that exceeds M, we ran a primality test from kn — 1 downwards to find the
biggest prime number. Specifically, we used Miller-Rabin primality test [9] since the algorithm
is very precise, also it is rather easier to implement on BigInteger.



Algorithm 1 Verifying k

1: procedure verify(k) > Verify if k is all-to-one
2 isalll < true

3 define check > a data structure
4:

5: for i from 1 to g do

6: n<1

7 clear orbit > a data structure
8 while n # 1 do

9: if n is in check or (k,n) # 1 then
10: break
11: else if n is in orbit then
12: isalll < false
13: break
14: else

15: put n in orbit

16: put n in check

17: end if

18:

19: p < biggest prime before kn
20: n<kn—p
21: end while
22:
23: if not isalll then
24: break
25: end if
26:
27: end for

28: end procedure

2.3. Prime weighted power series

With a simple intuition, one can deduct that for any all-to-one k and any natural number n,
it is possible to find a subsequence with length [ + 1 of S¥ with first element n and last element
1. By the definition, we can easily show this equation holds.

E(k(...(kn—p1) —pa...) —p =1,  p; is the biggest prime less than kS¥ (i)

In other form,
1 pr | Di-1 p1
n7ﬁ+ﬁ+kz1—1 +.”+ﬁ'

Definition 5. If n = % + 2+ ]’;’1111 + -+ B for some k € N and prime numbers p;,1 <1 <1,
we call it a prime weighted k-power series of n.

We have shown that a prime weighted k-power series of n exists for every natural number n
and all-to-one k. But few questions arise from this expansion - Is the order of prime numerators
unique? Or possibly is [ subordinative to n and k? Moreover, is this series unique? Will changing



k to another all-to-one m give an integral sum again? Can a not-all-to-one k can have a prime
weighted k-power series for every n € N7 - we cannot answer these questions yet. But we may
suggest this conjecture.

Conjecture 1. A prime weighted k-power series of n is unique for all-to-one k and n, and it is
the series derived from SF.

3. Not-all-to-one k

3.1. Orbits

Theorem 8. An orbit consists only odd numbers if k is even, and has even length if k is odd.

PRrOOF. If k is even, k > 2. Then since every component n should satisfy (k,n) = 1 by Lemma
6. Since k is even, (2,n) = 1. Let k be odd and n be any component of the orbit. Since 3 is
all-to-one, k > 5. Hence kn should be strictly bigger than 5 and thus the biggest prime p before
kn cannot be 2. n and kn — p cannot have the same parity. It implies that any orbit should have
a length of even number.

For example, k = 2572 has an orbit of 3 -+ 13 -9 —+ 5 — --- — 11 — 3, which has only odd
numbers as its component. Also, & = 367352 has an orbit of 3 +29 -9 - 11 -39 — --- —
13 — 7 — 3, and it has only odd numbers as its components.

On the other hands, £ = 2143 has an orbit of 4 -9 — 14 — 13 — --- — 5 — 4, which has
length of 8. Also, k = 248917 has an orbit of 5 — 18 — 25 — 42 — .-+ — 39 — 22 — 5, which
has length of 20.

3.2. Distribution

By calculations, we have found every orbits with k less than 28314000. As we can see from
the table, odd k’s tend to have much more orbits. Regarding that there were 12994257 odd
not-all-to-one k’s and 10315630 even not-all-to-one k’s, odd k’s have likely to have more orbits.
Besides, even k’s seem to have more diverse orbit lengths. Though odd £’s have much longer
orbits, even k’s’ orbit lengths vary. Also, the more the length of the orbits gets longer, the less
orbits there are. The number of the orbits even are strictly decreasing.

We cannot provide a thoroughful proof for the assymetrical distribution of orbits for odd and
even k’s, but intuitively it is pretty obvious that odd k’s should have as twice as orbits than even
k’s. By Lemma 6, the components of an orbit should be coprimes to k. Hence even k’s can have
at most as half candidates for the orbit as odd k’s.



Table 1: number of orbits

Length 0Odd Even Length
2 19726872 8576763 2
4 4148803 2506421 3
6 1484385 1485506 4
8 569544 720840 5
10 208052 366303 6
12 69897 176677 7
14 21610 81581 8
16 6098 36033 9
18 1551 15234 10
20 386 6082 11
22 76 2270 12
24 16 795 13
26 3 271 14
- - 85 15
- - 25 16
- - 9 17
- - 1 18
- 26237293 13974896 -

On the other hands, this following table shows how many orbits the k’s have. Very naturally,
there tend to be less k’s with more orbits. One interesting point is that there are more odd k’s
with 2 orbits rather than 1 orbit.

Table 2: number of orbits per k

7# of Sum 0dd k Even k
orbits
1 11854608 1675178 7179520
2 7409524 4752648 2656876
3 2929862 2492230 437632
4 875647 836290 39357
5 200321 198144 2177
6 34739 34672 67
7 4595 4593 2
8 449 449 :
9 47 47 -
10 5 5 .
- 23309887 12094257 10315630

4. Generalised f(n) — p problem

Now we can expand this kn — p problem using more broader approaches, such as generalised
function actions on numbers.



Definition 6. We can define a sequence S} = {a;, as,as3...} for some function f : N — N and
a natural number n, where a; = n and a;41 = f(a;) — p; where p; is the biggest prime number
less than f(a;). If such p; does not exist, a;11 = a;.

Definition 7. In similar sense to kn — p problem, we will say that the function f has all-to-one
property, alternatively f is all-to-one when f : N — N satisfies inf S{ = 1 for all n € N.
Otherwise, we will say f is not-all-to-one.

Similar to the kn — p problem, we want inf S = 1 for any n. With similar logic we used to
solve the kn — p problem, it is not so hard to show that numerous sublinear functions would be
all-to-one since the sequence will be decreasing strictly for sufficiently big integers. For example,
two functions [log, z] + 3 or |v/z] 4+ 7 have all-to-one property. Moreover, we can show that
some sublinear functions with specific form always have all-to-one property.

Theorem 9. For any function in the form of |log, x| + b is all-to-one regardless of the value
of natural number a > 3 if b = p+ 1 for some prime number p. In fact, b should be the next
number of a prime number to have |log, x| + b to be always all-to-one for all natural number a.

PROOF. Let us think of a function f = |log, x| + b where a > 3, and b — 1 is a prime number.
(ie. b = p+ 1 for some prime number p.) Then if n < a, f(n) = b = p+ 1 and hence
inf S = 1. More specifically, S7(2) = 1. Now we know that if n < a®~!, infS} = 1 since
f(n) = |log,n| +b<a—14+b=a+p, and the biggest prime ¢ smaller than f(n) should be
equal or bigger than p, f(n) — ¢ < a. We can increase the upper bound of n with inf S} = 1
because a > 3 gives the upper bound a®~! is strictly bigger than the previous upper bound a.
It is easy to see that for sufficiently big n, the sequence strictly decreases and therefore with
finite steps of bound increasing we can show that f is all-to-one. To prove the second statement,
simply having a > b — p will make a cycle of b—p —b—p — b—p..., where p is the biggest
prime number before b.

As we can see from the theorem, there are numerous numbers of sublinear all-to-one functions.
But when it comes to superlinear functions, it is rather hard to see if a function is all-to-one.
We can’t even ensure if the sequence will be decreasing or not for big integers. It is pretty much
similar to the notorious Collatz conjecture in this sense, which might imply that it will not be
easy to show that a function is all-to-one. I will present some possible examples of a superlinear
all-to-one function.

2

Conjecture 2. f(z)=x?*, g(z) = [zlogz] + 1 are all-to-one.

Oppermann’s conjecture [10] suggests that there always exists a prime number between n? —n

and n? for natural number n > 2. This can imply that Sﬁf always strictly decreasing, in other
words, z? is all-to-one. If this conjecture holds, it is very likely that SZ1°8® will decrease for
sufficiently big integers and we can expect that these two functions, #? and [rlogz] + 1 are
all-to-one. With numerical calculations, I could show that the sequences converge to 1 for small
integers (smaller than 10,000,000). Though it is a very strong evidence that those two functions
are all-to-one from the fact that maximal prime gap is sufficiently small, still there can be a
very abnormal case of a cycle. In fact prime gap g, grows less than the scale of Y525 [11],
and it implies that if functions that are o(n'/952%) ~ o(n'-2°47) have all-to-one property with
‘sufficiently small’ integer domain, such functions will be all-to-one over whole natural number
domain. This observation cannot assure that z? is all-to-one, but it is very likely [xlogx] + 1
to be all-to-one.
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