
TOWARDS PRACTICAL MULTI-KEY TFHE Parallelizable, Key-Compatible, Quasi-Linear Complexity

Hyesun Kwak, Seonhong Min, Yongsoo Song Seoul National University

Multi-Key (Fully) Homomorphic Encryption

Contribution 2 Generalized External Product

We introduce a new multiplication operation that multiplies an **arbitrary single**key RGSW (RLEV) ciphertext to a MK-RLWE ciphertext.

> Recall that the external product homomorphically **multiplicates the message** to each component of the ciphertext.

 $\varphi_t(\mathbf{c} \boxtimes \mathbf{C}) \approx \mu \cdot \varphi_t(\mathbf{c}) \approx \varphi_t(\mu \cdot \mathbf{c})$

- Similarly, we multiplicate the single-key RGSW (RLEV) to each component of the MK-RLWE ciphertext. However, the resulting ciphertext is encrypted under the tensor product of the single key and the multi-key.
- > We can resolve this issue from exploiting the **relinearization** technique. The owner of the single key publishes the relinearization key in the form of the **Uni-Encryption** and then relinearize the resulting ciphertext with Hybrid

An **MKHE** scheme is a cryptosystem based on FHE which enables us to perform homomorphic evaluations between messages encrypted under different secret keys.

Prior work by Chen, Chillotti, Song [CCS19]

The main contribution of this paper is Hybrid Product, which is a homomorphic multiplication between Uni-Encryption and an MK-RLWE ciphertext of $\tilde{O}(kn)$ time complexity where k, n denotes the number of associated parties and the length of ciphertext, respectively.

- > Uni-Encryption is a structured single-key RGSW ciphertext, having CRS (common reference string) as its randomness.
- > Replacing the External Products and RGSW keys in BlindRotate algorithm in TFHE with Hybrid Products and Uni-Encryption, the authors could achieve $\tilde{O}(k^2n^2)$ time complexity.

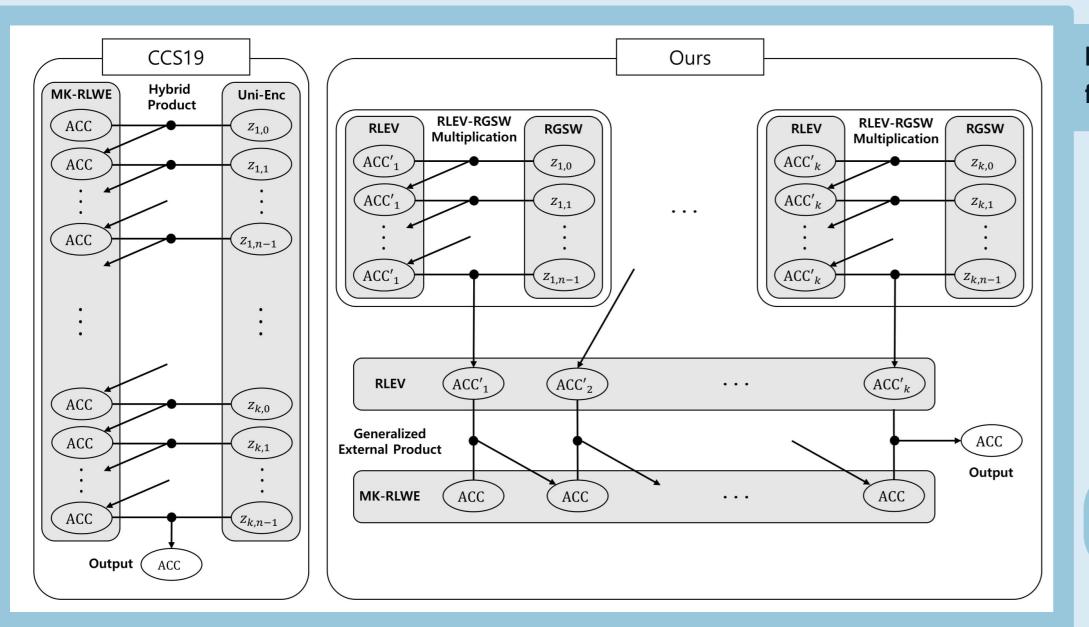
Contribution 1 Improved Hybrid Product

We improve the Hybrid Product by a factor of almost two. We observed that we can rearrange the order of the operations and as a result, we can reduce the number of decompositions from 4k + 4 to 2k + 4. The noise growth from this improved method is slightly smaller than the original method, although the difference

Product. The time complexity of this operation is $\tilde{O}(kn)$.

New BlindRotate algorithm

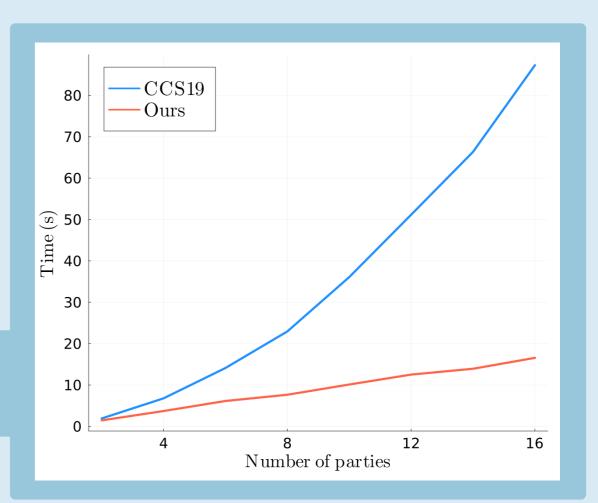
We improve the MK-TFHE scheme from the generalized external product. The vague outline of our scheme is as follows.


- Perform Blind Rotation with single-key RGSW (RLEV) accumulators for each party.
- 2. Multiplicate each party's RGSW (RLEV) accumulator to the test vector using the generalized external product.
- \succ The time complexity for the first phase is $\tilde{O}(dkn^2)$ where d is the length of the RGSW accumulator, and the time complexity for the second phase is $\tilde{O}(k^2n)$. In typical settings, **k** is much smaller than **n**, therefore our scheme is **quasi-linear** to the number of parties.
- \succ Since the accumulators are independently generated, the phase 1 can be algorithmically parallelized, with $\tilde{O}(dn^2 + k^2n)$ time complexity.
- > The blind rotation key is compatible to the single-key TFHE scheme and each party only needs to publish one additional relinearization key.

Experiments

Our algorithmic improvements overwhelm its disadvantage and **outperform** the previous scheme. As expected, our bootstrapping achieves almost linear time complexity with respect to the number of parties, compared to the quadratic

is almost negligible.


growth of CCS19 scheme.

High-level overview of the blind rotation algorithms from CCS19 and Ours.

The time elapsed in NAND algorithms

Of Ours and CCS19 with 16 parties.

