
Faster TFHE Bootstrapping
with Block Binary Keys

Changmin Lee1, Seonhong Min2, Jinyeong Seo2, Yongsoo Song2

1Korea Institute for Advanced Study, Seoul
2Seoul National University, Seoul

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 1 / 20

Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) supports arbitrary function
evaluation on encrypted data.

Various Applications: privacy preserving machine learning, private
information retrieval, private set intersection ...

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 2 / 20

Learning with Errors

The most efficient FHEs to date are built on Learning with Errors
(LWE) problem and its ring-variant Ring-LWE (RLWE).

LWE: (a, b) ≈c U(Zn+1
q)

▶ a← U(Zn
q), s ∈ Zn, e ← small dist’ over Z

▶ b = −⟨a, s⟩+ e (mod q)

RLWE: (a, b) ≈c U(R2
q)

▶ Variant of LWE over Rq = R/qR where R = Z[X]/(XN + 1)

▶ a← U(Rq), s ∈ R, e ← small dist’ over R

▶ b = −a · s + e (mod q)

FHE schemes based on LWE/RLWE
▶ BGV / BFV / CKKS
▶ TFHE / FHEW

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 3 / 20

TFHE description

FHE scheme that supports bits operations (NAND, AND, OR. . .).

Secret Key:
– LWE secret s = (s1, . . . , sn)

– RLWE secret t =
∑N

i=1 tiX
i−1

– Vectorized secret t = (t1, . . . , tN)
– All keys are sampled from binary distribution

Encoding: m ∈ {−1, 1} 7→ µ = q
8m ∈ Zq

Decoding:

{
1 if µ > 0

−1 otherwise

Encryption: c = (b, a) ∈ Zn+1
q for a← U(Zn

q), e ← small dist.,
b = −⟨a, s⟩+ µ+ e.

Decryption: b + ⟨a, s⟩ = µ+ e

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 4 / 20

Homomorphic Gate Evaluation

Each bit operation consists of the following pipeline:

Linear Combination : The linear combination corresponding to a
Boolean gate is evaluated.

– ex) NAND : c = (q8 , 0)− c1 − c2
– output ciphertext contains a large noise e.

Bootstrapping : Reduces the size of noise for further evaluation.

– ex) ∥e∥ < q
8 → ∥e

′∥ < q
16

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 5 / 20

TFHE Bootstrapping

Blind Rotation : Homomorphically computes the decryption circuit
on the exponent of X i.e., X b+⟨a,s⟩.

▶ Need Blind Rotation Key : Encryptions of si (1 ≤ i ≤ n)

Sample Extract : Extract an LWE ciphertext from the resulting
RLWE ciphertext.

Key-Switching : Switch the secret key of the LWE ciphertext.
▶ Need Key-Switching Key : Encryptions of ti (1 ≤ i ≤ N)

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 6 / 20

Our Contribution

Motivation : Most FHE schemes (BGV/FV/CKKS) make an additional
assumption on key structure to obtain better efficiency.

– BGV/FV : Small noise growth in homomorphic
multiplication.

– CKKS : Small depth for bootstrapping.

Our Result : We adapt similar approach to accelerate TFHE
bootstrapping.

1 Faster Blind Rotation
– Sample LWE key from block binary key distribution
– Reduce the number of iterations.

2 Compact Key-Switching
– Re-use the LWE key as a part of RLWE key
– Improve both time and space complexity

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 7 / 20

Blind Rotation

Functionality

Homomorphic evaluation of tv · X b+
∑n

i=1 ai si = tv · X
q
8
m+e ∈ Rq.

▶ tv = − q
8 (1 + X + · · ·+ XN−1) ∈ Rq.

▶ Constant term of tv · X
q
8m+e = q

8m.

Homomorphically multiply monomials X ai si to tv · X b iteratively.

We need n homomorphic multiplications total.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 8 / 20

Previous Blind Rotation

X ai si =

{
X ai (si = 1)

1 (si = 0)
= 1 + (X ai − 1)si

– Using this key formula, we have [X ai si]t = 1 + (X ai − 1)[si]t
– We iteratively multiply one monomial X ai si for n times.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 9 / 20

Observation

Can we multiply 2 monomials simultaneously?

X a1s1+a2s2

= (1 + (X a1 − 1)s1)(1 + (X a2 − 1)s2)

= 1 + (X a1 − 1)s1 + (X a2 − 1)s2+(X a1 − 1)(X a2 − 1)s1s2

With this formula, the number of homomorphic mult reduces by half.
▶ Requires RGSW encryption of s1s2
▶ + the number of linear evaluation grows.

What if we can ignore the case where s1 = s2 = 1?
▶ No additional blind rotation keys are required.
▶ The number of linear evaluation remains same.

Generalization: How about ℓ monomials?
→ Possible. If s is sampled from Block Binary Key Distribution...

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 10 / 20

Block Binary Keys

Definition (Block Binary Key)

n = kℓ for two positive integers k , ℓ > 0

s = (B1, . . . ,Bk) ∈ {0, 1}n

Bi ← U((1, 0, . . . , 0), . . . , (0, 0, . . . , 1), (0, . . . , 0))

At most one 1 in each block

Figure: Block Binary Key with ℓ = 3 and k = 6

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 11 / 20

Block Binary Keys

X a1s1 =

{
X a1 (s1 = 1)

1 (s1 = 0)

= 1 + (X a1 − 1)s1

→ Multiply 1 monomial with 1 mult and 1 add.

X
∑ℓ

i=1 ai si =

X a1 (s1 = 1, s2 = 0, . . . , sℓ = 0)
...

X aℓ (s1 = 0, s2 = 0, . . . , sℓ = 1)

1 (s1 = 0, s2 = 0, . . . , sℓ = 0)

= 1 +
ℓ∑

i=1

(X ai − 1)si

→ Multiply ℓ monomials with 1 mult and ℓ add.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 12 / 20

Our Blind Rotation

Iteratively multiplies ℓ monomials with one homomorphic
multiplication.

Only k homomorphic multiplications are required!!

However, not direct ℓ-times speedup due to other operations.

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 13 / 20

Security of Block Binary Keys

Asymptotic Security : If the entropy of key distribution is
sufficiently large, LWE is secure (Goldwasser et al).

– Entropy of block binary keys : (ℓ+ 1)k

Concrete Security : We conducted cryptanalysis considering the
best-known lattice attacks.

▶ Classical Dual

▶ Meet-in-the-Middle

▶ Taylor-made

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 14 / 20

Parameters

We set the parameters with 128-bit security level.

As ℓ grows, n = kℓ grows as well to secure enough entropy.

n = kℓ N ℓ Dual MitM Taylor-made

630 1024 2 128.8 139.7 128.8

687 1024 3 128.3 128.2 126.7

788 1024 4 128.6 128.0 127.4

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 15 / 20

Key-Switching

Functionality

Switch the secret key of LWE ciphertext from t to s.

For LWE ciphertext c = (b, a1, . . . , aN) encrypted under t, we
compute c′ = (b, 0, . . . , 0) +

∑N
i=1 ai · Encs(ti).

▶ Encs(ti): Gadget encryptions of ti under s (1 ≤ i ≤ N).

▶ Decs(c′) ≈ b +
∑N

i=1 ai ti = Dect(c).

Complexity

▶ Time : N homomorphic scalar multiplications.

▶ Space: N key-switching keys

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 16 / 20

Compact Key-Switching

If ti = si (1 ≤ i ≤ n), we can replace c′ by

(b, a1, . . . , an) +
N∑

i=n+1

ai · Encs(ti)

▶ Decs(c′) ≈ b +
∑n

i=1 ai si +
∑N

i=n+1 ai ti = b +
∑N

i=1 ai ti = Dect(c).

Complexity

▶ Time : N− n scalar multiplications

▶ Space : N− n key-switching keys

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 17 / 20

Compact Key-Switching

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 18 / 20

Implementation & Result

ℓ n Bootstrapping Key Size

TFHE · 630 10.5 ms 109 MB

2 630 7.0 ms

Ours 3 687 6.5 ms 60 MB

4 788 6.7 ms

Table: 128-bit Security level

Implemented based on the TFHE library.

We achieve 1.5-1.6x SPEEDUP!

Key size is reduced by 1.8x!

Source code is available at github.com/SNUCP/blockkey-tfhe

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 19 / 20

C. Lee, S. Min, J. Seo, Y. Song TFHE with Block Binary Keys 20 / 20

